Academic Calendar(20-21) prepared and adhered to:

Department of Mathematics

SI No	Hons/Gen	Paper	Group	Topic	No. of Lecture	Name of the Lecture
1. Gen $1^{\text {st }}$ Sem $\begin{gathered}\text { Differential } \\ \text { Calculus }\end{gathered}$						
				Limit, Continuit y and Differenti ation	5	Concept of Limit
					2	Problems-Solutions
					1	Class test
					6	Continuity and discontinuity
					3	Problems- Solutions
					1	Class test
					6	Differentiation
					2	Problems-Solutions
					1	Successive Differentiation
					2	Leibnitz Theorem and its application
					1	Problem Solutions
					1	Class test
					4	Partial Differentiations
					2	Euler's Theorem
					4	Problem Solutions
					1	Class test

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | |
| | | | | 3 | order preservation and squeeze
 theorem |
| | | | | | monotone sequences and their
 convergence (monotone |
| convergence theorem without | | | | | |
| proof). | | | | | |

				3	Mn-test	
					M-test	

				10	Simultaneous differential equations
				3	Total differential equations.
				1	Class Test
				3	Order and degree of partial differential equations
				3	Concept of linear and non-linear partial differential equations
				3	Formation of first order partial differential equations
				6	Linear partial differential equation of first order,
				3	Lagrange's method
				3	Charpit's method
				5	Classification of second order partial differential equations into elliptic, parabolic and hyperbolic through illustrations only.
				1	Class Test
5	Gen	Sem 4	Group Theory		
				8	Equivalence relations and partitions, Functions
				1	Composition of functions

SI No	Hons/Ge \mathbf{n}	Paper	Group	Topic	No. of Lecture	Name of the Lecture
1.	Gen	6h Sem		Numerical Methods		
				Numerical Solutions	2	Concept and necessity of Numerical Methods
				2	Method of Tabulation	

| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | |

| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | |

