Academic Calendar (2018-19) of Physics (PHSG)

Academic Calendar (2018-19) prepared and adhered to:

Department of physics									
Subje	ct: PHSG			·	•	•			
Mon	th: July 20	18-May 201	9			Year-2018-2019			
SI No	Hons/ Gen	Paper	Group	Topic	No. of Lecture	Name of the Lecture	Class Taken		
1.	<mark>Gen</mark>	PHSGCOR 01T	Mechanic s	Mechanics					
	1 st sem				3	Vectors: vector algebra, Scalar	3		
					1	and vector products. Derivatives of a vector with	1		
					1		1		
						respect to a parameter.			
					1	Class test	1		
					2	Ordinary Differential	2		
				Mathematical		Equations: 1st order			
						homogeneous differential			
				Methods		equations			
					2	2nd order homogeneous and	2		
						In homogeneous differential			
				-		equations with constant			
						coefficients.			
					1	Class test	1		
					1	Laws of Motion: Frames of	1		
						reference.	2		
					2	Newton's Laws of motion.	2		
	1					Dynamics of a system of particles Centre			
						of Mass			
	1				1	Class Test	1		
					4	Momentum and Energy:	3		
						Conservation of momentum,			
				Particle Dynamics		Work and energy			
				Dynamics	3	Conservation of energy. Motion of	3		
						rockets.			
					1	Class Test	1		
					3	Rotational Motion: Angular velocity and angular momentum	3		
	1				2	Torque. Conservation of angular	2		
						momentum			
					1	Class Test	1		
					1	Gravitation: Newton's Law of Gravitation	1		
				Gravitation	2	Motion of a particle in a central force field ,motion is in a plane, Angular momentum is conserved,	2		

Physics (PHSG)

,		Inys	ics (PHS		
			2	areal velocity is constant. Kepler's Laws (statement only). Satellite in circular orbit and applications. Geosynchronous orbits.	2
			2	Weightlessness. Basic idea of global positioning system (GPS).	2
			1	Class Test	1
			2	Oscillations: Differential equation of SHM and its solutions	2
		oscillations	2	Kinetic and Potential Energy, Total Energy and their time averages.	2
			2	Damped oscillations. Forced harmonic oscillations, resonance	2
		Elasticity	2	Hooke's law - Stress-strain diagram - Elastic moduli-Relation between elastic constants	2
			2	Poisson's Ratio- Expression for Poisson's ratio in terms of elastic constants	2
			2	Work done in stretching and work done intwisting a wire - Twisting couple on a cylinder	2
			2	Determination of Rigidity modulus by static torsion Torsional pendulum Bending of beam.	2
		Special theory of relativity	3	Special Theory of Relativity: Constancy of speed of light	3
			2	Postulates of Special Theory of Relativity. Length contraction. Time dilation.	2
			1	Relativistic addition of velocities	1
			1	Class Test	1
PHSGCOR 01P	Mechanic s Lab			General Topic Discussion on random errors in observations. Measurement principles of length (or diameter) using vernier caliper, screw gauge and travelling microscope. Discussion on the parts of Sextant.	

Physics (PHSG)

			1	- I II y c	103 (111)		T
				List of	2	1. To study the random error in	0
						observations of time period of some	
				Practical		oscillation using chronometer.	
					2	2. To determine the Moment of Inertia of	2
						a regular body using another auxilary body	
						and a cradle suspeded by a metalic wire	
					2	3. To determine g and velocity for a freely	0
						falling body using Digital Timing Technique	
					3	4. To determine the Young's Modulus by	3
						flexure method	
			Α	Modern Algebra	2	5. To determine the Modulus of Rigidity of	2
					-	a Wire by a torsional pendulum.	
					2	6. To determine the height of a building	0
					-	using a Sextant.	
			В	Geometry	2	7. To determine the elastic Constants of a	0
			Ь	Geometry	2		0
		-			+	wire by Searle's method	4
					1	8. To determine the value of g using Bar	1
						Pendulum	
					2	9. To determine the value of g using	0
						Kater's Pendulum	
					2	10. To study the Motion of Spring and	2
						calculate, (a) Spring constant, (b) g and (c)	
			<u></u>			Modulus of rigidity	
			1				
_	2 nd	DUICCCOD	Electrical de	Marker Arrelada			
<mark>2.</mark>	2	PHSGCOR	Electricity	Vector Analysis			
	<u>sem</u>	02T	and				
			Magnetis				
			m				
				Α	4	Review of vector algebra (Scalar and	2
						Vector product), gradient, divergence, Curl	
						and their significance	
				В	3	Vector Integration, Line, surface and	3
						volume integrals of Vector fields	
					1	Class test	1
				С	4	Gauss-divergence theorem and Stoke's	2
						theorem of vectors (statement only)	
						, , , , , ,	
				Electrostatics			
				A	3	Electrostatic Field, electric flux, Gauss's	3
						theorem of electrostatics. Applications of	
						Gauss theorem	
	 	1	 	В	3	Electric field due to point charge, infinite	3
				b b] 3		3
	1					line of charge, uniformly charged spherical	
	1					shell and solid sphere, plane charged	
						sheet, charged conductor	
			ļ		1	Class test	1
	1			С	2	Electric potential due to an electric dipole.	1
						Calculation of electric field from potential	
				D	3	Capacitance of an isolated spherical	2
	1					conductor. Parallel plate condenser.	
						Energy per unit volume in electrostatic	
						field	
					1	Class test	1
	1			E	4	Dielectric medium, Polarisation,	2
						Displacement vector. Gauss's theorem in	
	1					dielectrics. Parallel plate capacitor	
						completely filled with dielectric	
	 	1	 		1	Class test	1
		1	 		1	Ciass (Est	1
		-	-	N/a am at 'a co	+		
	<u> </u>	1	-	Magnetism	1		
			l				

Physics (PHSG)

		Filys	sics (PHS)G)	
		A	3	Magnetostatics: Biot-Savart's law & its applications- straight conductor, circular coil, solenoid carrying current	3
		В	2	Divergence and curl of magnetic field. Magnetic vector potential. Ampere's circuital law	2
		С	2	Magnetic properties of materials: Magnetic intensity, magnetic induction	2
		D	2	permeability, magnetic susceptibility. Brief introduction of dia-, para- and ferromagnetic materials. Electromagnetic	2
			1	Class test	1
		Electromagnetic Induction			
		A	2	Faraday's laws of electromagnetic induction, Lenz's law	2
		В	2	self and mutual inductance, L of single coil	1
			2	M of two coils. Energy stored in magnetic field	2
		С			
		Linear Network			
			3	Impedance of L, C, R and their combinations. Thevenin & Norton's Theorem.	2
			2	Maximum power transfer theorem and superposition theorem. Anderson's bridge. Maxwell	2
		Maxwell's Equations and Electromagnetic Wave Propagation			
		A	4	Equation of continuity of current, Displacement current, Maxwell's equations	4
		В	1	Poynting vector, energy density in electromagnetic field .	1
		С	4	electromagnetic wave propagation through vacuum and isotropic dielectric medium, transverse nature of EM waves, polarization	4
PHSGCOR 02P	Electricity and Magnetis m Lab		General topic	Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, (d) Capacitances (e) Checking electrical fuses and (f) circuit continuity check. Demonstration on Carey Foster's bridge, potentiometer, resistance box, inductor coil, moving coil galvanometer (in dead beat and ballistic mode), etc.	
		List of Practicals			
			2	1.To determine an unknown Low Resistance using Carey Foster's Bridge	0
			3	2. To verify the Thevenin and Norton theorems	3
			2	To verify the Superposition and Maximum power transfer theorems	2
			3	To determine self-inductance of a coil by Anderson's bridge	3
			3	5. To study response curve of a Series LCR circuit and determine its (a) Resonant	2

Physics ((PHSG)
1 11 1 21 1 2 1	

			frequency, (b) Impedance at resonance, (c) Quality factor Q, and (d) Band width	
		3	6. To study the response curve of a parallel LCR circuit and determine its (a) Anti-resonant frequency and (b) Quality factor Q.	2
		2	7. To study the characteristics of a series RC Circuit	0
		2	8. To determine an unknown Low Resistance using Potentiometer	0
		2	9. To determine the resistance of a galvanometer using Thomson's method	0
		2	10. Measurement of field strength B and its variation in a solenoid (determine dB/dx)	0

SI No	Hons/ Gen	Paper	Grou p	Topic	No. of Lecture	Name of the Lecture
3.	Sem- III	PHSGCOR03 T				
	Gen		А	Laws of Thermodynamics	22	
			В	ThermodynamicP otentials	10	
			С	Kinetic Theory of Gases	10	
			D	Theory of Radiations	6	
			E	Statistical Mechanics	12	
		PHSGCOR03	А			
			В			
			С			
			D			
			E			
			F			

	Department of Physics									
Subject: PHSG										
Month: Mar 2018-May 2019 Year-2018-2019										
SI	Hons/	Paper	Group	Topic	No. of	Name of the Lecture	Class taken			
No	<mark>Gen</mark>				Lecture					
1.	<mark>Gen</mark>	П			10	Remedial Classes	8			